Identities Rational trigonometry
1 identities
1.1 explicit formulas
1.2 recursion formula
1.3 relation chebyshev polynomials
1.4 composition
1.5 coefficients in finite fields
1.6 orthogonality
1.7 generating functions
1.8 differential equation
identities
explicit formulas
s
n
(
s
)
=
s
∑
k
=
0
n
−
1
n
n
−
k
(
2
n
−
1
−
k
k
)
(
−
4
s
)
n
−
1
−
k
.
{\displaystyle s_{n}(s)=s\sum _{k=0}^{n-1}{\frac {n}{n-k}}{\binom {2n-1-k}{k}}(-4s)^{n-1-k}.}
(michael hirschhorn, shuxiang goh)
s
n
(
s
)
=
1
2
−
1
4
(
1
−
2
s
+
2
s
2
−
s
)
n
−
1
4
(
1
−
2
s
−
2
s
2
−
s
)
n
.
{\displaystyle s_{n}(s)={\tfrac {1}{2}}-{\tfrac {1}{4}}\left(1-2s+2{\sqrt {s^{2}-s}}\right)^{n}-{\tfrac {1}{4}}\left(1-2s-2{\sqrt {s^{2}-s}}\right)^{n}.}
(m. hovdan)
s
n
(
s
)
=
−
1
4
(
(
1
−
s
+
i
s
)
2
n
−
1
)
2
(
1
−
s
−
i
s
)
2
n
.
{\displaystyle s_{n}(s)=-{\tfrac {1}{4}}\left(\left({\sqrt {1-s}}+i{\sqrt {s}}\right)^{2n}-1\right)^{2}\left({\sqrt {1-s}}-i{\sqrt {s}}\right)^{2n}.}
(m. hovdan)
from definition follows that
s
n
(
s
)
=
sin
2
(
n
arcsin
(
s
)
)
.
{\displaystyle s_{n}(s)=\sin ^{2}\left(n\arcsin \left({\sqrt {s}}\right)\right).}
recursion formula
s
n
+
1
(
s
)
=
2
(
1
−
2
s
)
s
n
(
s
)
−
s
n
−
1
(
s
)
+
2
s
.
{\displaystyle s_{n+1}(s)=2(1-2s)s_{n}(s)-s_{n-1}(s)+2s.}
relation chebyshev polynomials
the spread polynomials related chebyshev polynomials of first kind, tn, identity
1
−
2
s
n
(
s
)
=
t
n
(
1
−
2
s
)
.
{\displaystyle 1-2s_{n}(s)=t_{n}(1-2s).}
this implies
s
n
(
s
)
=
1
−
t
n
(
1
−
2
s
)
2
=
1
−
t
n
2
(
1
−
s
)
.
{\displaystyle s_{n}(s)={\frac {1-t_{n}(1-2s)}{2}}=1-t_{n}^{2}\left({\sqrt {1-s}}\right).}
the second equality above follows identity
2
t
n
2
(
x
)
−
1
=
t
2
n
(
x
)
{\displaystyle 2t_{n}^{2}(x)-1=t_{2n}(x)}
on chebyshev polynomials.
composition
the spread polynomials satisfy composition identity
s
n
(
s
m
(
s
)
)
=
s
n
m
(
s
)
.
{\displaystyle s_{n}{\bigl (}s_{m}(s){\bigr )}=s_{nm}(s).}
coefficients in finite fields
when coefficients taken members of finite field fp, sequence {sn}n = 0, 1, 2,... of spread polynomials periodic period p − 1/2. in other words, if k = p − 1/2, sn + k = sn, all n.
orthogonality
when coefficients taken real, n ≠ m, have
∫
0
1
(
s
n
(
s
)
−
1
2
)
(
s
m
(
s
)
−
1
2
)
d
s
s
(
1
−
s
)
=
0.
{\displaystyle \int _{0}^{1}\left(s_{n}(s)-{\tfrac {1}{2}}\right)\left(s_{m}(s)-{\tfrac {1}{2}}\right){\frac {ds}{\sqrt {s(1-s)}}}=0.}
for n = m, integral π/8 unless n = m = 0, in case is π/4.
generating functions
the ordinary generating function is
∑
n
=
1
∞
s
n
(
s
)
x
n
=
s
x
(
1
+
x
)
(
1
−
x
)
3
+
4
s
x
(
1
−
x
)
.
{\displaystyle \sum _{n=1}^{\infty }s_{n}(s)x^{n}={\frac {sx(1+x)}{(1-x)^{3}+4sx(1-x)}}.}
(michael hirschhorn)
the exponential generating function is
∑
n
=
1
∞
s
n
(
s
)
n
!
x
n
=
1
2
e
x
(
1
−
e
−
2
s
x
cos
(
2
x
s
(
1
−
s
)
)
)
.
{\displaystyle \sum _{n=1}^{\infty }{\frac {s_{n}(s)}{n!}}x^{n}={\tfrac {1}{2}}e^{x}\left(1-e^{-2sx}\cos \left(2x{\sqrt {s(1-s)}}\right)\right).}
differential equation
sn(s) satisfies second-order linear nonhomogeneous differential equation
s
(
1
−
s
)
y
″
+
(
1
2
−
s
)
y
′
+
n
2
(
y
−
1
2
)
=
0.
{\displaystyle s(1-s)y +\left({\tfrac {1}{2}}-s\right)y +n^{2}\left(y-{\tfrac {1}{2}}\right)=0.}
^ cite error: named reference wildberger_2005 invoked never defined (see page).
Comments
Post a Comment