Laws of rational trigonometry Rational trigonometry




1 laws of rational trigonometry

1.1 triple quad formula
1.2 pythagoras s theorem
1.3 spread law
1.4 cross law
1.5 triple spread formula





laws of rational trigonometry

wildberger states there 5 basic laws in rational trigonometry. states these laws can verified using high-school level mathematics. equivalent standard trigonometrical formulae variables expressed quadrance , spread.


in following 5 formulae, have triangle made of 3 points a1, a2, a3. spreads of angles @ points s1, s2, s3, , q1, q2, q3, quadrances of triangle sides opposite a1, a2, a3, respectively. in classical trigonometry, if know 3 of 6 elements s1, s2, s3, q1, q2, q3, , these 3 not 3 s, can compute other three.


triple quad formula

the 3 points a1, a2, a3 collinear if , if:







(

q

1


+

q

2


+

q

3



)

2


=
2

(

q

1


2


+

q

2


2


+

q

3


2


)



{\displaystyle (q_{1}+q_{2}+q_{3})^{2}=2\left(q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right)}



where q1, q2, q3 represent quadrances between a1, a2, a3 respectively. can either proved analytic geometry (the preferred means within rational trigonometry) or derived heron s formula, using condition collinearity triangle formed 3 points has 0 area.




illustration of nomenclature used in proof.


the line ab has general form:







a
x
+
b
y
+
c
=
0


{\displaystyle ax+by+c=0}



where (non-unique) parameters a, b, c can expressed in terms of coordinates of points , b as:











a



=

a

y




b

y






b



=

b

x




a

x






c



=

a

x



b

y




a

y



b

x








{\displaystyle {\begin{aligned}a&=a_{y}-b_{y}\\b&=b_{x}-a_{x}\\c&=a_{x}b_{y}-a_{y}b_{x}\end{aligned}}}



so that, everywhere on line:








(

a

y




b

y


)

x
+

(

b

x




a

x


)

y
+

(

a

x



b

y




a

y



b

x


)

=
0.


{\displaystyle \left(a_{y}-b_{y}\right)x+\left(b_{x}-a_{x}\right)y+\left(a_{x}b_{y}-a_{y}b_{x}\right)=0.}



but line can specified 2 simultaneous equations in parameter t, t = 0 @ point , t = 1 @ point b:











x



=
(

b

x




a

x


)
t
+

a

x


,




y



=
(

b

y




a

y


)
t
+

a

y


,






{\displaystyle {\begin{aligned}x&=(b_{x}-a_{x})t+a_{x},\\y&=(b_{y}-a_{y})t+a_{y},\end{aligned}}}



or, in terms of original parameters:











x



=
b
t
+

a

x


,




y



=

a
t
+

a

y


.






{\displaystyle {\begin{aligned}x&=bt+a_{x},\\y&=-at+a_{y}.\end{aligned}}}



if point c collinear points , b, there exists value of t (for distinct points, not equal 0 or 1), call λ, these 2 equations simultaneously satisfied @ coordinates of point c, such that:












c

x





=
b
λ
+

a

x


.





c

y





=

a
λ
+

a

y


.






{\displaystyle {\begin{aligned}c_{x}&=b\lambda +a_{x}.\\c_{y}&=-a\lambda +a_{y}.\end{aligned}}}



now, quadrances of 3 line segments given squared differences of coordinates, can expressed in terms of λ:











q
(
a
b
)




(

b

x




a

x



)

2


+
(

b

y




a

y



)

2








=

b

2


+
(

a

)

2








=

a

2


+

b

2






q
(
b
c
)




(

c

x




b

x



)

2


+
(

c

y




b

y



)

2








=


(


(
b
λ
+

a

x


)


b

x





)



2


+


(


(

a
λ
+

a

y


)


b

y





)



2








=


(


b
λ
+
(

a

x




b

x


)



)



2


+


(



a
λ
+
(

a

y




b

y


)



)



2








=


(


b
λ
+
(

b
)



)



2


+
(

a
λ
+
a

)

2








=

b

2


(
λ

1

)

2


+

a

2


(

λ
+
1

)

2








=

b

2


(
λ

1

)

2


+

a

2


(
λ

1

)

2








=

(

a

2


+

b

2


)

(
λ

1

)

2






q
(
a
c
)




(

c

x




a

x



)

2


+
(

c

y




a

y



)

2








=


(


(
b
λ
+

a

x


)


a

x





)



2


+


(


(

a
λ
+

a

y


)


a

y





)



2








=
(
b
λ
+

a

x




a

x



)

2


+
(

a
λ
+

a

y




a

y



)

2








=
(
b
λ

)

2


+
(

a
λ

)

2








=

b

2



λ

2


+
(

a

)

2



λ

2








=

b

2



λ

2


+

a

2



λ

2








=

(

a

2


+

b

2


)


λ

2








{\displaystyle {\begin{aligned}q(ab)&\equiv (b_{x}-a_{x})^{2}+(b_{y}-a_{y})^{2}\\&=b^{2}+(-a)^{2}\\&=a^{2}+b^{2}\\[10pt]q(bc)&\equiv (c_{x}-b_{x})^{2}+(c_{y}-b_{y})^{2}\\&={\bigl (}(b\lambda +a_{x})-b_{x}{\bigr )}^{2}+{\bigl (}(-a\lambda +a_{y})-b_{y}{\bigr )}^{2}\\&={\bigl (}b\lambda +(a_{x}-b_{x}){\bigr )}^{2}+{\bigl (}-a\lambda +(a_{y}-b_{y}){\bigr )}^{2}\\&={\bigl (}b\lambda +(-b){\bigr )}^{2}+(-a\lambda +a)^{2}\\&=b^{2}(\lambda -1)^{2}+a^{2}(-\lambda +1)^{2}\\&=b^{2}(\lambda -1)^{2}+a^{2}(\lambda -1)^{2}\\&=\left(a^{2}+b^{2}\right)(\lambda -1)^{2}\\[10pt]q(ac)&\equiv (c_{x}-a_{x})^{2}+(c_{y}-a_{y})^{2}\\&={\bigl (}(b\lambda +a_{x})-a_{x}{\bigr )}^{2}+{\bigl (}(-a\lambda +a_{y})-a_{y}{\bigr )}^{2}\\&=(b\lambda +a_{x}-a_{x})^{2}+(-a\lambda +a_{y}-a_{y})^{2}\\&=(b\lambda )^{2}+(-a\lambda )^{2}\\&=b^{2}\lambda ^{2}+(-a)^{2}\lambda ^{2}\\&=b^{2}\lambda ^{2}+a^{2}\lambda ^{2}\\&=\left(a^{2}+b^{2}\right)\lambda ^{2}\end{aligned}}}



where use made of fact (−λ + 1) = (λ − 1).


substituting these quadrances equation proved:













(


q
(
a
b
)
+
q
(
b
c
)
+
q
(
a
c
)



)



2





=
2

(
q
(
a
b

)

2


+
q
(
b
c

)

2


+
q
(
a
c

)

2


)







(

(

a

2


+

b

2


)

+

(

a

2


+

b

2


)

(
λ

1

)

2


+

(

a

2


+

b

2


)


λ

2


)


2





=
2

(


(

a

2


+

b

2


)


2


+


(

(

a

2


+

b

2


)

(
λ

1

)

2


)


2


+


(

(

a

2


+

b

2


)


λ

2


)


2


)







(

a

2


+

b

2


)


2




(
1
+
(
λ

1

)

2


+

λ

2


)


2





=
2


(

a

2


+

b

2


)


2



(
1
+


(
(
λ

1

)

2


)


2


+


(

λ

2


)


2


)







{\displaystyle {\begin{aligned}{\bigl (}q(ab)+q(bc)+q(ac){\bigr )}^{2}&=2\left(q(ab)^{2}+q(bc)^{2}+q(ac)^{2}\right)\\\left(\left(a^{2}+b^{2}\right)+\left(a^{2}+b^{2}\right)(\lambda -1)^{2}+\left(a^{2}+b^{2}\right)\lambda ^{2}\right)^{2}&=2\left(\left(a^{2}+b^{2}\right)^{2}+\left(\left(a^{2}+b^{2}\right)(\lambda -1)^{2}\right)^{2}+\left(\left(a^{2}+b^{2}\right)\lambda ^{2}\right)^{2}\right)\\\left(a^{2}+b^{2}\right)^{2}\left(1+(\lambda -1)^{2}+\lambda ^{2}\right)^{2}&=2\left(a^{2}+b^{2}\right)^{2}\left(1+\left((\lambda -1)^{2}\right)^{2}+\left(\lambda ^{2}\right)^{2}\right)\end{aligned}}}



now, if , b represent distinct points, such + b ≠ 0, may divide both sides q(ab) = (a + b):













(
1
+

λ

2



2
λ
+
1
+

λ

2


)


2





=
2

(
1
+


(

λ

2



2
λ
+
1
)


2


+

λ

4


)







(
2

λ

2



2
λ
+
2
)


2





=
2

(
1
+

λ

4



2

λ

3


+

λ

2



2

λ

3


+
4

λ

2



2
λ
+

λ

2



2
λ
+
1
+

λ

4


)





4


(

λ

2



λ
+
1
)


2





=
2

(
2

λ

4



4

λ

3


+
6

λ

2



4
λ
+
2
)





4

(

λ

4




λ

3


+

λ

2




λ

3


+

λ

2



λ
+

λ

2



λ
+
1
)




=
4

(

λ

4



2

λ

3


+
3

λ

2



2
λ
+
1
)






λ

4



2

λ

3


+
3

λ

2



2
λ
+
1



=

λ

4



2

λ

3


+
3

λ

2



2
λ
+
1






{\displaystyle {\begin{aligned}\left(1+\lambda ^{2}-2\lambda +1+\lambda ^{2}\right)^{2}&=2\left(1+\left(\lambda ^{2}-2\lambda +1\right)^{2}+\lambda ^{4}\right)\\\left(2\lambda ^{2}-2\lambda +2\right)^{2}&=2\left(1+\lambda ^{4}-2\lambda ^{3}+\lambda ^{2}-2\lambda ^{3}+4\lambda ^{2}-2\lambda +\lambda ^{2}-2\lambda +1+\lambda ^{4}\right)\\4\left(\lambda ^{2}-\lambda +1\right)^{2}&=2\left(2\lambda ^{4}-4\lambda ^{3}+6\lambda ^{2}-4\lambda +2\right)\\4\left(\lambda ^{4}-\lambda ^{3}+\lambda ^{2}-\lambda ^{3}+\lambda ^{2}-\lambda +\lambda ^{2}-\lambda +1\right)&=4\left(\lambda ^{4}-2\lambda ^{3}+3\lambda ^{2}-2\lambda +1\right)\\\lambda ^{4}-2\lambda ^{3}+3\lambda ^{2}-2\lambda +1&=\lambda ^{4}-2\lambda ^{3}+3\lambda ^{2}-2\lambda +1\end{aligned}}}





pythagoras s theorem

the lines a1a3 (of quadrance q1) , a2a3 (of quadrance q2) perpendicular (their spread 1) if , if:








q

1


+

q

2


=

q

3


.


{\displaystyle q_{1}+q_{2}=q_{3}.}



where q3 quadrance between a1 , a2.


this equivalent pythagorean theorem (and converse).


there many classical proofs of pythagoras s theorem; 1 framed in terms of rational trigonometry.


the spread of angle square of sine. given triangle △abc spread of 1 between sides ab , ac,







q
(
a
b
)
+
q
(
a
c
)
=
q
(
b
c
)


{\displaystyle q(ab)+q(ac)=q(bc)}



where q quadrance , i.e. square of distance.




illustration of nomenclature used in proof.


construct line ad dividing spread of 1, point d on line bc, , making spread of 1 db , dc. triangles △abc, △dba , △dac similar (have same spreads not same quadrances).


this leads 2 equations in ratios, based on spreads of sides of triangle:












s

c





=



q
(
a
b
)


q
(
b
c
)







=



q
(
b
d
)


q
(
a
b
)







=



q
(
a
d
)


q
(
a
c
)



.





s

b





=



q
(
a
c
)


q
(
b
c
)







=



q
(
d
c
)


q
(
a
c
)







=



q
(
a
d
)


q
(
a
b
)



.






{\displaystyle {\begin{aligned}s_{c}&={\frac {q(ab)}{q(bc)}}&&={\frac {q(bd)}{q(ab)}}&&={\frac {q(ad)}{q(ac)}}.\\s_{b}&={\frac {q(ac)}{q(bc)}}&&={\frac {q(dc)}{q(ac)}}&&={\frac {q(ad)}{q(ab)}}.\end{aligned}}}



now in general, 2 spreads resulting dividing spread 2 parts, line ad spread cab, not add original spread since spread non-linear function. first prove dividing spread of 1, results in 2 spreads add original spread of 1.


for convenience, no loss of generality, orient lines intersecting spread of 1 coordinate axes, , label dividing line coordinates (x1, y1) , (x2, y2). 2 spreads given by:












s

1





=



(

x

2




x

2



)

2


+
(

y

2




y

1



)

2




(

x

2




x

1



)

2


+
(

y

2




y

1



)

2









=



(

y

2




y

1



)

2




(

x

2




x

1



)

2


+
(

y

2




y

1



)

2





,





s

2





=



(

x

2




x

1



)

2


+
(

y

2




y

2



)

2




(

x

2




x

1



)

2


+
(

y

2




y

1



)

2









=



(

x

2




x

1



)

2




(

x

2




x

1



)

2


+
(

y

2




y

1



)

2





.






{\displaystyle {\begin{aligned}s_{1}&={\frac {(x_{2}-x_{2})^{2}+(y_{2}-y_{1})^{2}}{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}&&={\frac {(y_{2}-y_{1})^{2}}{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}},\\s_{2}&={\frac {(x_{2}-x_{1})^{2}+(y_{2}-y_{2})^{2}}{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}&&={\frac {(x_{2}-x_{1})^{2}}{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}.\end{aligned}}}



hence








s

1


+

s

2


=



(

x

2




x

1



)

2


+
(

y

2




y

1



)

2




(

x

2




x

1



)

2


+
(

y

2




y

1



)

2





=
1
,


{\displaystyle s_{1}+s_{2}={\frac {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}=1,}



so that








s

c


+

s

b


=
1.


{\displaystyle s_{c}+s_{b}=1.}



using first 2 ratios first set of equations, can rewritten:










q
(
a
b
)


q
(
b
c
)



+



q
(
a
c
)


q
(
b
c
)



=
1.


{\displaystyle {\frac {q(ab)}{q(bc)}}+{\frac {q(ac)}{q(bc)}}=1.}



multiplying both sides q(bc):







q
(
a
b
)
+
q
(
a
c
)
=
q
(
b
c
)
.


{\displaystyle q(ab)+q(ac)=q(bc).}



q.e.d.




spread law

for triangle △a1a2a3 nonzero quadrances:










s

1



q

1




=



s

2



q

2




=



s

3



q

3




.


{\displaystyle {\frac {s_{1}}{q_{1}}}={\frac {s_{2}}{q_{2}}}={\frac {s_{3}}{q_{3}}}.}



this law of sines, squared.


cross law

for triangle △a1a2a3,







(

q

1


+

q

2




q

3



)

2


=
4

q

1



q

2


(
1


s

3


)
.


{\displaystyle (q_{1}+q_{2}-q_{3})^{2}=4q_{1}q_{2}(1-s_{3}).}



this analogous law of cosines. called cross law because (1 − s3), square of cosine of angle, called cross .


triple spread formula

for triangle △a1a2a3,







(

s

1


+

s

2


+

s

3



)

2


=
2

(

s

1


2


+

s

2


2


+

s

3


2


)

+
4

s

1



s

2



s

3


.


{\displaystyle (s_{1}+s_{2}+s_{3})^{2}=2\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right)+4s_{1}s_{2}s_{3}.}



this relation can derived formula sine of compound angle: in triangle (whose 3 angles sum 180°) have,







sin

(
a
)
=
sin

(
b
+
c
)
=
sin

(
b
)
cos

(
c
)
+
sin

(
c
)
cos

(
b
)


{\displaystyle \sin(a)=\sin(b+c)=\sin(b)\cos(c)+\sin(c)\cos(b)}

.

equivalently, describes relationship between spreads of 3 concurrent lines, spread (like angle) unaffected when sides of triangle moved parallel meet in common point.


knowing 2 spreads allows third calculated solving associated quadratic formula but, since 2 solutions possible, further triangle spread rules must used select appropriate one. (the relative complexity of process contrasts simpler method of obtaining supplementary angle of 2 others.)








Comments

Popular posts from this blog

1940-1941 Pontiac Torpedo

1920–1923 List of 1920s jazz standards

Sovereign Building Zollinger-Harned Company Building