Calculating spread Rational trigonometry




1 calculating spread

1.1 trigonometric
1.2 vector/slope (two-variable)
1.3 cartesian (three-variable)





calculating spread
trigonometric

suppose 2 lines, l1 , l2, intersect @ point shown @ right. choose point b ≠ on l1 , let c foot of perpendicular b l2. spread s is







s
(



1


,



2


)
=



q
(
b
,
c
)


q
(
a
,
b
)



=


q
r


.


{\displaystyle s(\ell _{1},\ell _{2})={\frac {q(b,c)}{q(a,b)}}={\frac {q}{r}}.}



vector/slope (two-variable)

like angle, spread depends on relative slopes of 2 lines (constant terms being eliminated) , invariant under translation (i.e. preserved when lines moved keeping parallel themselves). given 2 lines equations are








a

1


x
+

b

1


y
=

constant



and



a

2


x
+

b

2


y
=

constant



{\displaystyle a_{1}x+b_{1}y={\text{constant}}\qquad {\text{and}}\qquad a_{2}x+b_{2}y={\text{constant}}}



we may rewrite them 2 lines meet @ origin (0, 0) equations








a

1


x
+

b

1


y
=
0


and



a

2


x
+

b

2


y
=
0


{\displaystyle a_{1}x+b_{1}y=0\qquad {\text{and}}\qquad a_{2}x+b_{2}y=0}



in position point (−b1, a1) satisfies first equation , (−b2, a2) satisfies second , 3 points (0, 0), (−b1, a1) , (−b2, a2) forming spread give 3 quadrances:












q

1





=

(

b

1


2


+

a

1


2


)

,





q

2





=

(

b

2


2


+

a

2


2


)

,





q

3





=


(

b

1




b

2


)


2


+


(

a

1




a

2


)


2








{\displaystyle {\begin{aligned}q_{1}&=\left(b_{1}^{2}+a_{1}^{2}\right),\\q_{2}&=\left(b_{2}^{2}+a_{2}^{2}\right),\\q_{3}&=\left(b_{1}-b_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}\end{aligned}}}



the cross law – see below – in terms of spread is







1

s
=



(

q

1


+

q

2




q

3



)

2




4

q

1



q

2





.


{\displaystyle 1-s={\frac {(q_{1}+q_{2}-q_{3})^{2}}{4q_{1}q_{2}}}.}



which becomes:







1

s
=




(

a

1


2


+

a

2


2


+

b

1


2


+

b

2


2



(

b

1




b

2



)

2



(

a

1




a

2



)

2


)


2



4

(

a

1


2


+

b

1


2


)


(

a

2


2


+

b

2


2


)




.


{\displaystyle 1-s={\frac {\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-(b_{1}-b_{2})^{2}-(a_{1}-a_{2})^{2}\right)^{2}}{4\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}}.}



this simplifies, in numerator, (2a1a2 + 2b1b2), giving:







1

s
=




(

a

1



a

2


+

b

1



b

2


)


2




(

a

1


2


+

b

1


2


)


(

a

2


2


+

b

2


2


)




.


{\displaystyle 1-s={\frac {\left(a_{1}a_{2}+b_{1}b_{2}\right)^{2}}{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}}.}



(note: 1 − s expression cross, square of cosine of either angle between pair of lines or vectors, gives name cross law.)


then, using brahmagupta–fibonacci identity









(

a

2



b

1




a

1



b

2


)


2


+


(

a

1



a

2


+

b

1



b

2


)


2


=

(

a

1


2


+

b

1


2


)


(

a

2


2


+

b

2


2


)

,


{\displaystyle \left(a_{2}b_{1}-a_{1}b_{2}\right)^{2}+\left(a_{1}a_{2}+b_{1}b_{2}\right)^{2}=\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right),}



the standard expression spread in terms of slopes (or directions) of 2 lines becomes







s
=




(

a

1



b

2




a

2



b

1


)


2




(

a

1


2


+

b

1


2


)


(

a

2


2


+

b

2


2


)




.


{\displaystyle s={\frac {\left(a_{1}b_{2}-a_{2}b_{1}\right)^{2}}{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}}.}



in form (and in cartesian equivalent follows) spread ratio of square of determinant of 2 vectors (numerator) product of quadrances (denominator)


cartesian (three-variable)

this replaces (−b1, a1) (x1, y1), (−b2, a2) (x2, y2) , origin (0, 0) (as point of intersection of 2 lines) (x3, y3) in previous result:







s
=





(


(

y

1




y

3


)
(

x

2




x

3


)

(

y

2




y

3


)
(

x

1




x

3


)



)



2






(


(

y

1




y

3



)

2


+
(

x

1




x

3



)

2




)




(


(

y

2




y

3



)

2


+
(

x

2




x

3



)

2




)





.


{\displaystyle s={\frac {{\bigl (}(y_{1}-y_{3})(x_{2}-x_{3})-(y_{2}-y_{3})(x_{1}-x_{3}){\bigr )}^{2}}{{\bigl (}(y_{1}-y_{3})^{2}+(x_{1}-x_{3})^{2}{\bigr )}{\bigl (}(y_{2}-y_{3})^{2}+(x_{2}-x_{3})^{2}{\bigr )}}}.}






^ cite error: named reference horizons invoked never defined (see page).






Comments

Popular posts from this blog

1940-1941 Pontiac Torpedo

1920–1923 List of 1920s jazz standards

Sovereign Building Zollinger-Harned Company Building