Constructions N = 2 superconformal algebra
1 constructions
1.1 free field construction
1.2 su(2) supersymmetric coset construction
1.3 kazama–suzuki supersymmetric coset construction
constructions
free field construction
green, schwarz & witten (1988) give construction using 2 commuting real bosonic fields
(
a
n
)
{\displaystyle (a_{n})}
,
(
b
n
)
{\displaystyle (b_{n})}
[
a
m
,
a
n
]
=
m
2
δ
m
+
n
,
0
,
[
b
m
,
b
n
]
=
m
2
δ
m
+
n
,
0
,
a
n
∗
=
a
−
n
,
b
n
∗
=
b
−
n
{\displaystyle \displaystyle {[a_{m},a_{n}]={m \over 2}\delta _{m+n,0},\,\,\,\,[b_{m},b_{n}]={m \over 2}\delta _{m+n,0}},\,\,\,\,a_{n}^{*}=a_{-n},\,\,\,\,b_{n}^{*}=b_{-n}}
and complex fermionic field
(
e
r
)
{\displaystyle (e_{r})}
{
e
r
,
e
s
∗
}
=
δ
r
,
s
,
{
e
r
,
e
s
}
=
0.
{\displaystyle \displaystyle {\{e_{r},e_{s}^{*}\}=\delta _{r,s},\,\,\,\,\{e_{r},e_{s}\}=0.}}
l
n
{\displaystyle l_{n}}
defined sum of virasoro operators naturally associated each of 3 systems
l
n
=
∑
m
:
a
−
m
+
n
a
m
:
+
∑
m
:
b
−
m
+
n
b
m
:
+
∑
r
(
r
+
n
2
)
:
e
r
∗
e
n
+
r
:
{\displaystyle l_{n}=\sum _{m}:a_{-m+n}a_{m}:+\sum _{m}:b_{-m+n}b_{m}:+\sum _{r}(r+{n \over 2}):e_{r}^{*}e_{n+r}:}
where normal ordering has been used bosons , fermions.
the current operator
j
n
{\displaystyle j_{n}}
defined standard construction fermions
j
n
=
∑
r
:
e
r
∗
e
n
+
r
:
{\displaystyle j_{n}=\sum _{r}:e_{r}^{*}e_{n+r}:}
and 2 supersymmetric operators
g
r
±
{\displaystyle g_{r}^{\pm }}
by
g
r
+
=
∑
(
a
−
m
+
i
b
−
m
)
⋅
e
r
+
m
,
g
r
−
=
∑
(
a
r
+
m
−
i
b
r
+
m
)
⋅
e
m
∗
{\displaystyle g_{r}^{+}=\sum (a_{-m}+ib_{-m})\cdot e_{r+m},\,\,\,\,g_{r}^{-}=\sum (a_{r+m}-ib_{r+m})\cdot e_{m}^{*}}
this yields n = 2 neveu–schwarz algebra with c = 3.
su(2) supersymmetric coset construction
di vecchia et al. (1986) gave coset construction of n = 2 superconformal algebras, generalizing coset constructions of goddard, kent & olive (1986) discrete series representations of virasoro , super virasoro algebra. given representation of affine kac–moody algebra of su(2) @ level
ℓ
{\displaystyle \ell }
basis
e
n
,
f
n
,
h
n
{\displaystyle e_{n},f_{n},h_{n}}
satisfying
[
h
m
,
h
n
]
=
2
m
ℓ
δ
n
+
m
,
0
,
{\displaystyle [h_{m},h_{n}]=2m\ell \delta _{n+m,0},}
[
e
m
,
f
n
]
=
h
m
+
n
+
m
ℓ
δ
m
+
n
,
0
,
{\displaystyle [e_{m},f_{n}]=h_{m+n}+m\ell \delta _{m+n,0},}
[
h
m
,
e
n
]
=
2
e
m
+
n
,
{\displaystyle \displaystyle {[h_{m},e_{n}]=2e_{m+n},}}
[
h
m
,
f
n
]
=
−
2
f
m
+
n
,
{\displaystyle \displaystyle {[h_{m},f_{n}]=-2f_{m+n},}}
the supersymmetric generators defined by
g
r
+
=
(
ℓ
/
2
+
1
)
−
1
/
2
∑
e
−
m
⋅
e
m
+
r
,
g
r
−
=
(
ℓ
/
2
+
1
)
−
1
/
2
∑
f
r
+
m
⋅
e
m
∗
.
{\displaystyle \displaystyle {g_{r}^{+}=(\ell /2+1)^{-1/2}\sum e_{-m}\cdot e_{m+r},\,\,\,g_{r}^{-}=(\ell /2+1)^{-1/2}\sum f_{r+m}\cdot e_{m}^{*}.}}
this yields n=2 superconformal algebra with
c
=
3
ℓ
/
(
ℓ
+
2
)
{\displaystyle c=3\ell /(\ell +2)}
.
the algebra commutes bosonic operators
x
n
=
h
n
−
2
∑
r
:
e
r
∗
e
n
+
r
:
.
{\displaystyle x_{n}=h_{n}-2\sum _{r}:e_{r}^{*}e_{n+r}:.}
the space of physical states consists of eigenvectors of
x
0
{\displaystyle x_{0}}
simultaneously annihilated
x
n
{\displaystyle x_{n}}
s positive
n
{\displaystyle n}
, supercharge operator
q
=
g
1
/
2
+
+
g
−
1
/
2
−
{\displaystyle q=g_{1/2}^{+}+g_{-1/2}^{-}}
(neveu–schwarz)
q
=
g
0
+
+
g
0
−
.
{\displaystyle q=g_{0}^{+}+g_{0}^{-}.}
(ramond)
the supercharge operator commutes action of affine weyl group , physical states lie in single orbit of group, fact implies weyl-kac character formula.
kazama–suzuki supersymmetric coset construction
kazama & suzuki (1989) generalized su(2) coset construction pair consisting of simple compact lie group
g
{\displaystyle g}
, closed subgroup
h
{\displaystyle h}
of maximal rank, i.e. containing maximal torus
t
{\displaystyle t}
of
g
{\displaystyle g}
, additional condition that
the dimension of centre of
h
{\displaystyle h}
non-zero. in case compact hermitian symmetric space
g
/
h
{\displaystyle g/h}
kähler manifold, example when
h
=
t
{\displaystyle h=t}
. physical states lie in single orbit of affine weyl group, again implies weyl–kac character formula affine kac–moody algebra of
g
{\displaystyle g}
.
Comments
Post a Comment